
Comprehensive NoSQL Injection Write-up

Contents

1 Overview 2

2 Authentication Mechanism Analysis 2

3 Authentication Bypass via $ne 3

4 User Enumeration Using $nin 4

5 Password Length Discovery via $regex 4

6 Password Extraction via Regex Bruteforce 5

7 Automation Using Burp Intruder 6

8 SSH Access and Credential Reuse 6

9 Discovery of $where Injection 7

10 Exploitation of $where Injection 8

11 Conclusion 9

1

1 Overview

This write-up documents the full exploitation chain of a vulnerable web application affected by
multiple NoSQL injection flaws. The target relies on MongoDB as its backend datastore and
exposes several unsafe query constructions that allow authentication bypass, user enumeration,
password extraction, lateral movement, and JavaScript-based NoSQL injection via the $where
operator.

Figure 1: The web page

2 Authentication Mechanism Analysis

The application exposes a login form that submits user credentials via an HTTP POST request.
An initial authentication attempt using invalid credentials is performed and intercepted using
Burp Suite.

POST /login.php HTTP /1.1
Content -Type: application/x-www -form -urlencoded

user=test&pass=test&remember=on

2

Figure 2: Intercepted authentication request

3 Authentication Bypass via $ne

The backend logic directly maps HTTP parameters to a MongoDB query. By replacing scalar
values with MongoDB comparison operators, authentication logic can be bypassed.
user[$ne]=test&pass[$ne]=test

This forces the database to evaluate a condition where both the username and password are
not equal to the provided values, resulting in a match for an existing user document.

Figure 3: Modified request using $ne operator

3

Figure 4: Successful authentication as administrator

4 User Enumeration Using $nin

The previous technique always returns the first document matched by the database. To control
which user is returned, the $nin operator is introduced.

user[$nin][]= admin&pass[$ne]=test

This query excludes the administrator account, forcing the database to return another valid
user.

Figure 5: Authentication request using $nin operator

Figure 6: Authenticated as a non-admin user

By iteratively modifying the excluded usernames, valid application users can be enumerated.

5 Password Length Discovery via $regex

Once authenticated, the password field can be targeted using regular expression-based NoSQL
injection. The first step is to determine the length of the password.

pass[$regex]=^.{7}$

4

Figure 7: Password length inference using regex

Here we got the Header location redirect us to /error, which means that the password isn’t of
lenght 7

Multiple attempts reveal that the password length is eight characters.

Figure 8: Password length inference using regex

6 Password Extraction via Regex Bruteforce

Password extraction is performed character by character by anchoring the regular expression.

pass[$regex]=^a.......$

This process is repeated for all possible characters until the correct one is identified for each
position.

Figure 9: Character-by-character password extraction

The recovered password for the user john is:

10584312

5

Figure 10: Recovered credentials for user john

7 Automation Using Burp Intruder

To optimize the extraction process, Burp Intruder is used to automate the regex-based brute
force attack.

Figure 11: Burp Intruder configuration

Figure 12: Automated password extraction results

The extracted password for the user pedro is:

coolpass123

8 SSH Access and Credential Reuse

The recovered credentials are reused to authenticate against the SSH service exposed by the
target.

ssh pedro@10 .81.188.193

6

Figure 13: SSH access using reused credentials

Figure 14: Post-authentication access and flag retrieval

9 Discovery of $where Injection

A Python application running on the target allows retrieval of email addresses based on a supplied
username.

Figure 15: The normal use

Injecting a single quote reveals a syntax error.

7

Figure 16: Syntax error triggered by single quote injection

The error message reveals the following query construction:

mycol.find ({" $where ": "this.username == ’" + username + "’"})

This confirms the presence of a JavaScript-based NoSQL injection.

10 Exploitation of $where Injection

The following payload is injected to force the condition to always evaluate to true:

’||1||’

The resulting condition returns all stored email addresses.

Figure 17: Injection payload execution

Figure 18: Successful extraction of all email addresses

8

11 Conclusion

This assessment demonstrates the severe impact of improperly handled NoSQL queries. Multiple
vulnerabilities were chained together, leading from unauthenticated access to full data disclosure
and system compromise. The attack surface was significantly expanded due to the unsafe use of
MongoDB operators and JavaScript execution within database queries.

9

	Overview
	Authentication Mechanism Analysis
	Authentication Bypass via $ne
	User Enumeration Using $nin
	Password Length Discovery via $regex
	Password Extraction via Regex Bruteforce
	Automation Using Burp Intruder
	SSH Access and Credential Reuse
	Discovery of $where Injection
	Exploitation of $where Injection
	Conclusion

