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Chapter 1

Executive Summary

This document summarises testing activities performed against an OWASP
Juice Shop instance. The main outcomes are:

• Authentication bypass via SQL Injection and additional successful login
to admin and other users.

• Brute force of admin account using Burp Intruder and the SecLists
top-1050 passwords list.

• Abuse of insecure password reset (security question) to reset user cre-
dentials.

• Discovery of an exposed FTP directory with confidential markdown
files; successful download of package.json.bak using a null-byte by-
pass.

• DOM-based and Reflected XSS vulnerabilities confirmed with JavaScript
payloads.
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Chapter 2

Scope and Objectives

Scope: web application (OWASP Juice Shop). Objectives:

• Identify and exploit common web vulnerabilities (SQLi, XSS, broken
auth).

• Demonstrate exploitation techniques (Intruder, Burp, manual injec-
tion).

• Collect evidence and recommend mitigations.
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Chapter 3

Tools and Wordlists

• Burp Suite (Proxy, Intruder, Repeater)

• FoxyProxy (browser proxy configuration)

• Firefox on Kali Linux

• SecLists: best1050.txt (1050 most common passwords) used as In-
truder payload list

• Standard Linux tooling (curl, wget) and manual inspection
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Chapter 4

Methodology

Testing followed a standard web-application pentest flow:

1. Reconnaissance and browsing to locate interesting pages (About, FTP
link etc.).

2. Intercept and inspect requests (Burp Proxy).

3. Test input fields for injection (SQLi / XSS).

4. Use Burp Intruder for automated credential testing (wordlists).

5. Perform OSINT to answer security question (for password-reset ex-
ploitation).

6. Explore exposed resources (FTP) and attempt to retrieve protected
files (null-byte trick).
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Chapter 5

Findings

5.1 Discovery: Useful Links and FTP

While browsing the site, a link from the About page pointed to an FTP
resource. The FTP directory contained markdown files and configuration
backups including acquisitions.md and package.json.bak. The acquisi-
tions file contained confidential acquisition plans.

Figure 5.1: About page (discovery of link leading to FTP area).

Figure 5.2: Listing of files in exposed FTP directory.
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Figure 5.3: acquisitions.md contained confidential acquisition text.

5.1.1 Access to package.json.bak: permission denied

Attempting to download package.json.bak directly returned an access/403
style denial in the application webserver.

Figure 5.4: 403 / access denied to package.json.bak when downloaded
normally.

5.1.2 Null byte (poison) bypass to retrieve backup file

A path filtering rule allowed only specific extensions (e.g. .md or .pdf).
We used a “null-byte/poison byte” style technique to bypass the filter and
retrieve the backup file. The retrieved file contents (sensitive metadata) are
shown below.
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Figure 5.5: Null byte used.

Figure 5.6: Contents of package.json.bak retrieved after bypass.

5.2 Authentication: SQL Injection

The login endpoint was tested for SQL injection by intercepting the request
and injecting classic SQLi payloads in the email field. The following payload
was effective for bypass:

’ OR 1=1--
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Figure 5.7: Intercepted login attempt captured in Burp Proxy.

Figure 5.8: SQL injection payload inserted into login request body.

Successful login as administrative and other accounts was observed:

Figure 5.9: Successful admin access after SQL injection.
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Figure 5.10: Login as another user (Bender) via injection.

5.3 Brute-force: Burp Intruder + SecLists

After identifying the login POST request format, Burp Intruder was used to
brute-force the admin password. The password field was set as the payload
position and the SecLists file containing the 1050 most common pass-
words (e.g. best1050.txt) was used.

Figure 5.11: Burp Intruder configured with a password payload position.

Using SecLists, the admin password was discovered:

Figure 5.12: Confirmed admin password found by Intruder (evidence).
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5.4 Password Reset Abuse via Weak Security

Questions (OSINT)

The Forgot Password flow relies on a security question. Using OSINT (Wikipedi-
a/other sources) we found the required answer for a target user (Jim) and
successfully changed his password.

Figure 5.13: OSINT lookup used to find the answer to Jim’s security ques-
tion.
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Figure 5.14: Changing Jim’s credentials via the password reset mechanism.

Figure 5.15: Validation of changed credentials (successful reset).

5.5 DOM-based Cross-Site Scripting (DOM

XSS)

We discovered a DOM-based XSS vulnerability in the search/track-result
parameter. By injecting an iframe payload encoded into search bar, the page
executed injected JavaScript in the DOM context.

Example payload used (In search bar):

<iframe src="javascript:alert(’xss’)">
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Successful DOM XSS execution (alert):

Figure 5.16: Alert triggered on the site via DOM XSS payload.

5.6 Reflected Cross-Site Scripting (Reflected

XSS)

Another class of XSS was identified in the application: Reflected XSS.
Here the malicious payload is reflected immediately in the response without
proper sanitization.

Injected payload:

<iframe src="javascript:alert(’xss’)">

Figure 5.17: Injected URL containing payload.

Figure 5.18: Injected URL containing payload.
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Figure 5.19: Execution of injected script confirming reflected XSS.
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Chapter 6

Mitigations and
Recommendations

• Use parameterized queries to eliminate SQL Injection.

• Apply account lockouts and rate-limiting to prevent brute force.

• Replace security questions with MFA or email-based resets.

• Prevent exposure of sensitive files (FTP / backups).

• Normalize inputs to prevent null-byte bypass.

• Encode user data and apply CSP to mitigate XSS.
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Chapter 7

Conclusion

The OWASP Juice Shop instance demonstrated multiple serious issues (SQLi,
weak auth, insecure file exposure, DOM and Reflected XSS). The combina-
tion of automated and manual testing led to full administrative compromise.
Secure coding practices and the mitigations proposed above are essential.
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