
CTF Report: Finding a Hidden Flag with the Web Inspector

Ayoub Goubraim

September 9, 2025

Abstract

This report documents the solution to the picoCTF challenge WebDecode. Using only
a browser’s Developer Tools (Web Inspector), we enumerate static pages, examine embedded
attributes, discover a Base64-encoded token in the DOM, and decode it to obtain the flag.

1 Challenge Overview

The challenge statement hints at using the web inspector and exploring “other files included by
the page.” An on-demand instance hosts a simple static website.

Figure 1: Challenge page: WebDecode.

2 Environment & Tools
• OS: Kali Linux.

1



• Browser: Firefox.
• Tools: Built-in Web Inspector (F12), and CyberChef (for Base64 decoding).

3 Reconnaissance

Navigating to the instance reveals a small multi-page site with a navbar (HOME, ABOUT, CONTACT).
The landing page encourages further navigation.

Figure 2: Homepage suggests continuing to navigate.

4 Inspecting the DOM

On the about.html page, a large banner explicitly suggests inspecting the page. Opening Devel-
oper Tools, the DOM shows a suspicious attribute embedded in a section element: notify_true="<base64_string>".

Figure 3: About page with the Web Inspector open. The hint says to inspect the page.

2



Figure 4: The Base64-encoded value found in the DOM (notify_true attribute).

5 Decoding and Extracting the Flag

The attribute value is Base64. Decoding it (e.g., in CyberChef with the From Base64 operation)
yields the flag in the standard picoCTF format.

Figure 5: Decoding the Base64 token reveals the flag.

6 Result

The decoded string is the challenge flag:

picoCTF{web_succ3ssfully_d3c0ded_283e62fe}

7 Discussion & Takeaways

This challenge reinforces common web-inspection techniques:

• Always check the DOM for hidden attributes, comments, or embedded data.
• Explore all linked pages (about, contact, assets).
• Recognize common encodings like Base64 and have a quick way to decode them (CyberChef

or CLI tools).

8 Conclusion

By systematically navigating the site and inspecting the DOM, we identified an embedded Base64
string and decoded it to retrieve the flag, fulfilling the WebDecode challenge requirements.

3


	Challenge Overview
	Environment & Tools
	Reconnaissance
	Inspecting the DOM
	Decoding and Extracting the Flag
	Result
	Discussion & Takeaways
	Conclusion

